Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

P. G. Aravindan, ${ }^{\text {a }}$

S. Selvanayagam, ${ }^{\text {a }}$
D. Velmurugan, ${ }^{\text {a }}$
K. Ravikumar, ${ }^{\text {b }}$
J. Jayashankaran ${ }^{c}$ and
R. Raghunathan ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, 'bLaboratory of X-ray Crystallography, Indian Institute of Chemical Technology, Hyderabad 500 007, India, and
${ }^{\text {c }}$ Department of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India

Correspondence e-mail: d_velu@yahoo.com

Key indicators

Single-crystal X-ray study
$T=273 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.080$
$w R$ factor $=0.179$
Data-to-parameter ratio $=13.5$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

1'-Methyl-4'-phenyl-H-fluorene-9-spiro-3'-pyrrolidine- 2^{\prime}-spiro- $3^{\prime \prime}$ - 1 H -indol- $2^{\prime \prime}\left(3^{\prime \prime} H\right)$-one

In the title compound, $\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}$, the pyrrolidine ring adopts a twist conformation. The dihedral angle between the fluorene ring system and the phenyl ring is $68.3(1)^{\circ}$. In the solid state, inversion-related molecules form dimers via $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. Weak $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions also stabilize the molecular packing.

Comment

Spiro compounds are often encountered in many pharmacologically relevant alkaloids (Cravotto et al., 2001). Pyrrolidinecontaining derivatives are used as antibiotics against pathogens of veterinary importance (Fleck et al., 2003). Fluorene derivatives are found to have anticonvulsant activity (Vanvakides et al., 2004). Several unusual amino acids which contain the pyrrolidine system have been investigated by Galeazzi et al. (1999). With this background, the crystal structure determination of the title compound, (I), has been carried out and the results are presented here.

(I)

The $\mathrm{C} s p^{3}-\mathrm{N} s p^{3}$ bond lengths in the pyrrolidine ring are comparable to those in a structure reported previously (Seshadri et al., 2004). In the fluorene moiety, the C3-C12 and $\mathrm{C} 3-\mathrm{C} 23$ bond distances are almost identical to the values reported in another spiro-linked system (Feng et al., 2004). Atoms O1 and C4 of the oxindole moiety are displaced by 0.240 (2) and -0.111 (2) \AA, respectively, from the mean plane through all oxindole ring atoms. This displacement is possibly due to atom O 1 being involved in hydrogen bonds with atoms C 13 and C 1 and to the bulky substituent at C 4 . The dihedral angle between the fluorene ring system and the phenyl ring is $68.3(1)^{\circ}$. There is a short contact ($2.09 \AA$) between atoms H 1 B and H 29 , which results in the widening of the $\mathrm{C} 2-\mathrm{C} 24-$ C29 angle [124.1 (4) ${ }^{\circ}$] from the ideal value of 120°. The

Figure 1
The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2
A perspective view of the molecular packing of (I). The $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ dimer and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions are shown as dashed lines. H atoms not involved in $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions have been omitted.
pyrrolidine ring adopts a twist conformation about $\mathrm{N} 1-\mathrm{C} 4$, with puckering parameters (Cremer \& Pople, 1975) $q_{2}=$ 0.421 (3) \AA and $\varphi=-13.4(5)^{\circ}$ and a small value of the displacement asymmetry parameter (Nardelli, 1983), $\Delta C_{2}=$ 0.024 (1).

Carbonyl atom O1 acts as a bifurcated acceptor, forming intramolecular interactions with atoms C 13 and C 1 (Table 2). Inversion-related molecules form dimers via strong $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, the graph-set motif being $R_{2}^{2}(8)$. Weak $\mathrm{C}-$ $\mathrm{H} \cdots \pi$ interactions, arranged in a zigzag fashion, also stabilize the crystal packing.

Experimental

A solution of 9-benzylidene fluorene (6 mmol), sarcosine (6 mmol) and isatin (6 mmol) was refluxed in aqueous methanol until the disappearance of the starting materials, as evidenced by TLC. On completion of the reaction, the crude product was filtered, dried and recrystallized from $\mathrm{MeOH} / \mathrm{CHCl}_{3}(2: 1)$.

Crystal data

$\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}$
$M_{r}=428.51$
Orthorhombic, Pbca
$a=18.1752$ (1) \AA
$b=13.6193$ (9) \AA
$c=18.4870$ (1) \AA
$V=4576.2(5) \AA^{3}$
$Z=8$
$D_{x}=1.244 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Bruker SMART APEX
diffractometer
ω scans
Absorption correction: none
22067 measured reflections
4023 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.081$
$w R\left(F^{2}\right)=0.179$
$S=1.12$
4023 reflections
298 parameters
H -atom parameters constrained

Mo $K \alpha$ radiation

Cell parameters from 2136
reflections
$\theta=2.5-27.9^{\circ}$
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=273$ (2) K
Block, colourless
$0.30 \times 0.25 \times 0.20 \mathrm{~mm}$

$$
\begin{aligned}
& 2700 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.063 \\
& \theta_{\max }=25.0^{\circ} \\
& h=-21 \rightarrow 21 \\
& k=-14 \rightarrow 16 \\
& l=-21 \rightarrow 21 \\
& \\
& \\
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0575 P)^{2}\right. \\
& \quad \quad+2.8984 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.23 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.19 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$.

$\mathrm{C} 3-\mathrm{C} 23$	$1.524(4)$	$\mathrm{N} 1-\mathrm{C} 4$	$1.446(4)$
$\mathrm{C} 3-\mathrm{C} 12$	$1.527(4)$	$\mathrm{N} 1-\mathrm{C} 32$	$1.447(4)$
$\mathrm{C} 1-\mathrm{N} 1$	$1.473(4)$		
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 32$	$115.5(3)$	$\mathrm{C} 32-\mathrm{N} 1-\mathrm{C} 1$	$114.1(3)$
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 1$	$106.1(3)$	$\mathrm{C} 11-\mathrm{N} 2-\mathrm{C} 10$	$112.0(3)$

Table 2
Hydrogen-bonding geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1-\mathrm{H} 1 B \cdots \mathrm{O} 1$	0.97	2.43	$2.983(4)$	115
$\mathrm{C} 13-\mathrm{H} 13 \cdots \mathrm{O} 1$	0.93	2.53	$3.126(5)$	122
N2-H1 O^{i}	0.86	1.97	$2.823(3)$	171
C6-H6 CgB	0.93	3.00	$3.376(3)$	105
$\mathrm{C} 19-\mathrm{H} 19 \cdots C g A^{\text {ii }}$	0.93	2.89	$3.790(4)$	161

Symmetry codes: (i) $-x,-y, 1-z$; (ii) $-x, \frac{1}{2}+y, \frac{1}{2}-z \cdot \operatorname{Cg} A$ is the centroid of ring A (C5-C10); $C g B$ is the centroid of ring $B(\mathrm{C} 18-\mathrm{C} 23)$.

The H atoms were positioned geometrically and were treated as riding on their parent atoms, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.93-$ $0.98 \AA$ and an $\mathrm{N}-\mathrm{H}$ distance of $0.86 \AA . U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for methyl H atoms and $1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$ for all other H atoms.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine

organic papers

structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ZORTEP (Zsolnai, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995).

Financial support for the departmental facilities from the University Grants Commission (UGC-SAP) and the Department of Science and Technology (DST-FIST), Government of India, is acknowledged. DV, PGA and SSN thank the Council of Scientific Industrial Research (CSIR) for financial support.

References

Bruker (2001). SAINT (Version 6.28a) and SMART (Version 5.625). Bruker AXS Inc., Madison, Wisconsin, USA

Cravotto, G., Giovenzana, G. B., Pilati, T., Sisti, M. \& Palmisano, G. (2001). J. Org. Chem. 66, 8447-8453.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Feng, L., Li, Z.-M., Tan, Y.-S., Chen, M.-Q., Weng, L.-H. \& Tao, F.-G. (2004). Acta Cryst. C60, o473-o474.
Fleck, T. J., McWhorther W. W. Jr, Dekam, R. N. \& Pearlman, B. A. (2003). J. Org. Chem. 68, 9612-9617.
Galeazzi, R., Geremia, S., Mobbili, G. \& Orena, M. (1999). Tetrahedron Asymmetry, 10, 587-605.
Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Seshadri, P. R., Selvanayagam, S., Velmurugan, D., Ravilumar, K., Sureshbabu, A. R., Parthasarathy, K. \& Raghunathan, R. (2004). Acta Cryst. E60, o553o555.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Vanvakides, A., Antoniou, K. \& Daifoti, Z. (2004). Ann. Pharm. Fr. 62, 49-55.
Zsolnai, L. (1997). ZORTEP. University of Heidelberg, Germany.

